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The task of system identification lies at the heart of neural data analysis. Bayesian system
identification methods provide a powerful toolbox which allows one to make inferences over
stimulus-neuron and neuron-neuron dependencies in a principled way. Rather than reporting only
the most likely parameters, the posterior distribution obtained in the Bayesian approach informs
us about the range of parameter values that are consistent with the observed data and the
assumptions made. In other words, Bayesian receptive fields always come with error bars. Since
the amount of data from neural recordings is limited, the error bars are as important as the
receptive field itself.

Here we apply a recently developed approximation of Bayesian inference to a multi-cell re-
sponse model consisting of a set of coupled units, each of which being a Linear-Nonlinear-Poisson
(LNP) cascade neuron model. The instantaneous firing rate of each unit depends multiplicatively
on both the spike train history of the units and the stimulus. Parameter fitting in this model has
been shown to be a convex optimization problem (Paninski 2004) that can be solved efficiently,
scaling linearly in the number of events, neurons and history-size. By doing inference in such
a model one can estimate excitatory and inhibitory interactions between the neurons and the
dependence of the stimulus. In addition, the Bayesian framework allows one not only to put error
bars on the inferred parameter values but also to quantify the predictive power of the model in
terms of the marginal likelihood.

As a sanity check of the new technique, and also to explore its limitations, we first verify for
artificially generated data that we are able to infer the true underlying model. Then we apply the
method to recordings from retinal ganglion cells (RGC) responding to white noise (m-sequence)
stimulation. The figure shows both the inferred receptive fields (lower) as well as the confidence
range of the sorted pixel values (upper) when using a different fraction of the data (0,10,50,
and 100 %). We also compare the results with the receptive fields derived with classical linear
correlation analysis and maximum likelihood estimation.
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